Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28982, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576563

RESUMO

Introduction: Managing cognitive function in care homes is a significant challenge. Individuals in care have a variety of scores across standard clinical assessments, such as the Mini-Mental Status Exam (MMSE), and many of them have scores that fall within the range associated with dementia. A recent methodological advance, brain vital sign monitoring through auditory event-related potentials, provides an objective and sensitive physiological measurement to track abnormalities, differences, or changes in cognitive function. Taking advantage of point-of-care accessibility, the current study evaluated the methodological feasibility, the assessment of whether a particular research method can be successfully implemented, of quantitatively measuring cognition of care home residents using brain vital signs. Secondarily, the current study examined the relationship between brain vital signs, specifically the cognitive processing associated N400 component, and MMSE scores in care home residents. Materials and methods: Brain vital signs used the established N100 (auditory sensation), P300 (basic attention), and N400 (cognitive processing) event-related potential (ERP) components. A total of 52 residents were enrolled, with all participants evaluated using the MMSE. Participants were assigned into homogeneous groups based on their MMSE scores, and were categorized into low (n = 14), medium (n = 17), and high (n = 13) MMSE groups. Both brain vital sign measures and underlying ERP waveforms were examined. Statistical analyses used partial least squares correlation (PLS) analyses in which both MMSE and age were included as factors, as well as jackknife approaches, to test for significant brain vital sign changes. Results: The current study successfully measured and analyzed standardized, quantifiable brain vital signs in a care home setting. ERP waveform data showed specific N400 changes between MMSE groups as a function of MMSE score. PLS analyses confirmed significant MMSE-related and age-related differences in the N400 amplitude (p < 0.05, corrected). Similarly, the jackknife approach emphasized the N400 latency difference between the low and high MMSE groups. Discussion and conclusion: It was possible to acquire brain vital signs measures in care home residents. Additionally, the current study evaluated brain vital signs relative to MMSE in this group. The comparison revealed significant decreasing in N400 response amplitude (cognitive processing) as a function of both MMSE score and age, as well as a slowing of N400 latency. The findings indicate that objective neurophysiological measures of impairment are detectable in care home residents across the span of MMSE scores. Direct comparison to MMSE- and age-related variables represents a critical initial step ahead of future studies that will investigate relative improvements in sensitivity, validity, reliability and related advantages of brain vital sign monitoring.

2.
Ageing Res Rev ; 77: 101614, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358720

RESUMO

INTRODUCTION: Multiple structural brain changes in Alzheimer's disease (AD) and mild cognitive impairment (MCI) have been revealed on magnetic resonance imaging (MRI). There is a fast-growing effort in applying artificial intelligence (AI) to analyze these data. Here, we review and evaluate the AI studies in brain MRI analysis with synthesis. METHODS: A systematic review of the literature, spanning the years from 2009 to 2020, was completed using the PubMed database. AI studies using MRI imaging to investigate normal aging, mild cognitive impairment, and AD-dementia were retrieved for review. Bias assessment was completed using the PROBAST criteria. RESULTS: 97 relevant studies were included in the review. The studies were typically focused on the classification of AD, MCI, and normal aging (71% of the reported studies) and the prediction of MCI conversion to AD (25%). The best performance was achieved by using the deep learning-based convolution neural network algorithms (weighted average accuracy 89%), in contrast to 76-86% using Logistic Regression, Support Vector Machines, and other AI methods. DISCUSSION: The synthesized evidence is paramount to developing sophisticated AI approaches to reliably capture and quantify multiple subtle MRI changes in the whole brain that exemplify the complexity and heterogeneity of AD and brain aging.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
3.
Sensors (Basel) ; 21(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34770564

RESUMO

BACKGROUND: Electroencephalography (EEG)-derived event-related potentials (ERPs) provide information about a variety of brain functions, but often suffer from low inherent signal-to-noise ratio (SNR). To overcome the low SNR, techniques that pool data from multiple sensors have been applied. However, such pooling implicitly assumes that the SNR among sensors is equal, which is not necessarily valid. This study presents a novel approach for signal pooling that accounts for differential SNR among sensors. METHODS: The new technique involves pooling together signals from multiple EEG channels weighted by their respective SNRs relative to the overall SNR of all channels. We compared ERP responses derived using this new technique with those derived using both individual channels as well as traditional averaged-based channel pooling. The outcomes were evaluated in both simulated data and real data from healthy adult volunteers (n = 37). Responses corresponding to a range of ERP components indexing auditory sensation (N100), attention (P300) and language processing (N400) were evaluated. RESULTS: Simulation results demonstrate that, compared to traditional pooling technique, the new SNR-weighted channel pooling technique improved ERP response effect size in cases of unequal noise among channels (p's < 0.001). Similarly, results from real-world experimental data showed that the new technique resulted in significantly greater ERP effect sizes compared to either traditional pooling or individual channel approach for all three ERP components (p's < 0.001). Furthermore, the new channel pooling approach also resulted in larger ERP signal amplitudes as well as greater differences among experimental conditions (p's < 0.001). CONCLUSION: These results suggest that the new technique improves the capture of ERP responses relative to traditional techniques. As such, SNR-weighted channel pooling can further enable widespread applications of ERP techniques, especially those that require rapid assessments in noisy out-of-laboratory environments.


Assuntos
Eletroencefalografia , Potenciais Evocados , Adulto , Atenção , Feminino , Humanos , Idioma , Masculino , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
4.
Front Hum Neurosci ; 14: 509258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192383

RESUMO

Numerous studies have noted the importance of white matter changes in motor learning, but existing literature only focuses on structural and microstructural MRI changes, as there are limited tools available for in vivo investigations of white matter function. One method that has gained recent prominence is the application of blood oxygen level dependent (BOLD) fMRI to white matter, with high-field scanners now being able to better detect the smaller hemodynamic changes present in this tissue type compared to those in the gray matter. However, fMRI techniques have yet to be applied to investigations of neuroplastic change with motor learning in white matter. White matter function represents an unexplored component of neuroplasticity and is essential for gaining a complete understanding of learning-based changes occurring throughout the whole brain. Twelve healthy, right-handed participants completed fine motor and gross motor tasks with both hands, using an MRI compatible computer mouse. Using a crossover design along with a prior analysis approach to establish WM activation, participants received a baseline scan followed by 2 weeks of training, returning for a midpoint and endpoint scan. The motor tasks were designed to be selectively difficult for the left hand, leading to a training effect only in that condition. Analysis targeted the comparison and detection of training-associated right vs left hand changes. A statistically significant improvement in motor task score was only noted for the left-hand motor condition. A corresponding change in the temporal characteristics of the white matter hemodynamic response was shown within only the right corticospinal tract. The hemodynamic response exhibited a reduction in the dispersion characteristics after the training period. To our knowledge, this is the first report of MRI detectable functional neuroplasticity in white matter, suggesting that modifications in temporal characteristics of white matter hemodynamics may underlie functional neuroplasticity in this tissue.

5.
Sci Transl Med ; 12(561)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938796

RESUMO

Although most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the p53 -/-; Rag2 -/-; Prkdcscid/scid triple mutant (TM) mice and p53 -/-; Prkdcscid/scid double mutant (DM) mouse models of spontaneous B-ALL. In contrast to DM animals, leukemic TM mice displayed brittle bones, and the TM leukemic cells overexpressed Rankl, encoding receptor activator of nuclear factor κB ligand. RANKL is a key regulator of osteoclast differentiation and bone loss. Transfer of TM leukemic cells into immunodeficient recipient mice caused trabecular bone loss. To determine whether human B-ALL can exert similar effects, we evaluated primary human B-ALL blasts isolated at diagnosis for RANKL expression and their impact on bone pathology after their transplantation into NOD.Prkdcscid/scidIl2rgtm1Wjl /SzJ (NSG) recipient mice. Primary B-ALL cells conferred bone destruction evident in increased multinucleated osteoclasts, trabecular bone loss, destruction of the metaphyseal growth plate, and reduction in adipocyte mass in these patient-derived xenografts (PDXs). Treating PDX mice with the RANKL antagonist recombinant osteoprotegerin-Fc (rOPG-Fc) protected the bone from B-ALL-induced destruction even under conditions of heavy tumor burden. Our data demonstrate a critical role of the RANK-RANKL axis in causing B-ALL-mediated bone pathology and provide preclinical support for RANKL-targeted therapy trials to reduce acute and long-term bone destruction in these patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Ligante RANK , Animais , Linfócitos B , Humanos , Camundongos , Camundongos Endogâmicos NOD , Osteoclastos
6.
Neuroimage ; 218: 116879, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32422401

RESUMO

Blink-related oscillations (BROs) are a recently discovered neurophysiological response associated with spontaneous blinking, distinct from the well-known oculomotor and visual suppression effects. BROs strongly activate the bilateral precuneus along with other cortical regions involved in visuospatial processing and associative episodic memory, and are believed to represent environmental monitoring processes that occur following blink-induced visual interruptions. Although these responses have been reported across multiple imaging modalities under both resting and cognitive loading conditions, it is yet unknown whether these responses also exist under external sensory stimulation conditions. To address this, we investigated BRO responses in healthy adults using 64-channel electroencephalography (EEG), while participants underwent passive external auditory and visual stimulation. Our results showed that BRO responses are present under both auditory and visual stimulation conditions (p â€‹< â€‹0.05), with similar temporal and spectral features compared to rest. However, visual stimulation did result in decreased BRO amplitude compared to auditory and resting conditions (p â€‹< â€‹0.05), suggesting decreased neuronal resources for processing blink-related information in the visual but not auditory environment. There were also additional pre-blink spectral changes in the visual condition compared to rest (p â€‹< â€‹0.05), which suggest that passive visual stimulation induces neural preparatory processes occurring in anticipation of the upcoming blink event. Together, these findings provide new and compelling evidence that blink-related neural processes are modulated not only by the internal cognitive loading due to simultaneous task demands, but also by competing external sensory requirements. This highlights the link between blinking and cognition, and further demonstrates the importance of BROs as a new window into brain function.


Assuntos
Piscadela/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa
7.
IEEE Trans Biomed Eng ; 67(10): 2916-2924, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32070941

RESUMO

OBJECTIVE: The ability to measure event-related potentials (ERPs) as practical, portable brain vital signs is limited by the physical locations of electrodes. Standard electrode locations embedded within the hair result in challenges to obtaining quality signals in a rapid manner. Moreover, these sites require electrode gel, which can be inconvenient. As electrical activity in the brain is spatially volume distributed, it should be possible to predict ERPs from distant sensor locations at easily accessible mastoid and forehead scalp regions. METHODS: An artificial neural network was trained on ERP signals recorded from below hairline electrode locations (Tp9, Tp10, Af7, Af8 referenced to Fp1, Fp2) to predict signals recorded at the ideal Cz location. RESULTS: The model resulted in mean improvements in intraclass correlation coefficient relative to control for all stimulus types (Standard Tones: +9.74%, Deviant Tones: +3.23%, Congruent Words: +15.25%, Incongruent Words: +25.43%) and decreases in RMS Error (Standard Tones: -26.72%, Deviant Tones: -17.80%, Congruent Words: -28.78%, Incongruent Words: -29.61%) compared to the individual distant channels. Measured vs predicted ERP amplitudes were highly and significantly correlated with control for the N100 (R = 0.5, padj < 0.05), P300 (R = 0.75, padj < 0.01), and N400 (R = 0.75, padj < 0.01) ERPs. CONCLUSION: ERP waveforms at distant channels can be combined using a neural network autoencoder to model the control channel features with better precision than those at individual distant channels. This is the first demonstration of feasibility of predicting evoked potentials and brain vital signs using signals recorded from more distant, practical locations. SIGNIFICANCE: This solves a key engineering challenge for applications that require portability, comfort, and speed of measurement as design priorities for measurement of event-related potentials across a range of individuals, settings, and circumstances.


Assuntos
Eletroencefalografia , Potenciais Evocados , Encéfalo , Eletrodos , Feminino , Humanos , Masculino , Couro Cabeludo
8.
IEEE Trans Biomed Eng ; 67(2): 453-463, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31059425

RESUMO

OBJECTIVE: Blink-related oscillations derived from electroencephalography (EEG) have recently emerged as an important measure of awareness. Combined with portable EEG hardware with low-density electrode arrays, this neural marker may crucially augment the existing bedside assessments of consciousness in unresponsive patients. Nonetheless, the close relationship between signal characteristics of the neural response of interest and blink-induced oculomotor artifacts poses particular challenges when measuring blink-related oscillations using a point-of-care platform. This study presents a novel denoising approach based on time-frequency (TF) filtering that exploits the differential temporal and spectral features to isolate the neural response from ocular artifact in a low-density array. METHODS: We investigated the effectiveness of the TF filtering technique using 64-channel EEG data collected in healthy adults, with focal analysis of the Pz and POz channels. RESULTS: TF filtering showed comparable performance in denoising the signal relative to the established gold-standard independent component analysis approach, with strong similarities in morphological characteristics as measured by intraclass correlations (p < 0.001), extent of artifact rejection based on the ocular contamination index (p < 0.006), as well as time- and frequency-domain signal capture (p < 0.05). Results are robust at the individual and group levels, and are crucially validated using raw data from only four electrodes comprising Pz, POz, Fp2, and T7. CONCLUSION: These results demonstrate for the first time that TF filtering enables the successful capture and isolation of the blink-related oscillations response using a four-electrode array. SIGNIFICANCE: This significantly advances the translation of the blink-related oscillations marker to a point-of-care platform for eventual bedside applications.


Assuntos
Piscadela/fisiologia , Estado de Consciência/classificação , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Artefatos , Estado de Consciência/fisiologia , Feminino , Humanos , Masculino , Sistemas Automatizados de Assistência Junto ao Leito , Adulto Jovem
10.
Brain ; 142(2): 255-262, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649205

RESUMO

There is a growing demand for objective evaluations of concussion. We developed a portable evoked potential framework to extract 'brain vital signs' using electroencephalography. Brain vital signs were derived from well established evoked responses representing auditory sensation (N100), basic attention (P300), and cognitive processing (N400) amplitudes and latencies, converted to normative metrics (six total). The study evaluated whether concussion-related neurophysiological impairments were detected over the duration of ice hockey seasons using brain vital signs. Forty-seven Tier III, Junior A, male ice hockey players were monitored over two seasons. Twelve sustained concussions after baseline testing then completed post-injury and return-to-play assessments. Twenty-three were not diagnosed with a concussion during the season and completed both baseline and post-season testing. Scores were evaluated using a repeated-measures analysis of variance with post hoc two-tailed paired t-tests. Concussion resulted in significantly increased amplitude and delayed latency scores for all six brain vital signs (P < 0.0001). Importantly, significant changes at return-to-play were also detected in basic attention (P300) amplitude, indicating persistent subclinical impairment. In the non-concussed group, there was also a significant change between baseline and post-season (P = 0.0047), with specific decreases in cognitive processing (N400) speed (P = 0.011) and overall total score (P = 0.002).


Assuntos
Concussão Encefálica/diagnóstico , Concussão Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Hóquei/lesões , Sinais Vitais/fisiologia , Adolescente , Concussão Encefálica/etiologia , Eletroencefalografia/métodos , Potenciais Evocados P300/fisiologia , Hóquei/fisiologia , Humanos , Masculino , Adulto Jovem
11.
J Neural Eng ; 16(1): 016008, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30507557

RESUMO

OBJECTIVE: The ability to orient with respect to the current context (e.g. current time or location) is crucial for daily functioning, and is used to measure overall cognitive health across many frontline clinical assessments. However, these tests are often hampered by their reliance on verbal probes (e.g. 'What city are we in?') in evaluating orientation. Objective, physiology-based measures of orientation processing are needed, but no such measures are currently in existence. We report the initial development of potential brainwave-based markers of orientation processing as characterized using electroencephlography (EEG) and magnetoencephalography (MEG). APPROACH: An auditory stimulus sequence embedded with words corresponding to orientation-relevant (i.e. related to the 'here and now') and orientation-irrelevant (i.e. unrelated to the current context) conditions was used to elicit orientation processing responses. EEG/MEG data, in concert with clinical assessments, were collected from 29 healthy adults. Analysis at sensor and source levels identified and characterized neural signals related to orientation processing. MAIN RESULTS: Orientation-irrelevant stimuli elicited increased negative amplitude in EEG-derived event-related potential (ERP) waveforms during the 390-570 ms window (p < 0.05), with cortical activations across the left frontal, temporal, and parietal regions. These effects are consistent with the well-known N400 response to semantic incongruence. In contrast, ERP responses to orientation-relevant stimuli exhibited increased positive amplitude during the same interval (p < 0.05), with activations across the bilateral temporal and parietal regions. Importantly, these differential responses were robust at the individual level, with machine-learning classification showing high accuracy (89%), sensitivity (0.88) and specificity (0.90). SIGNIFICANCE: This is the first demonstration of a neurotechnology platform that elicits, captures, and evaluates electrophysiological markers of orientation processing. We demonstrate neural responses to orientation stimuli that are validated across EEG and MEG modalities and robust at the individual level. The extraction of physiology-based markers through this technique may enable improved objective brain functional evaluation in clinical applications.


Assuntos
Estimulação Acústica/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Orientação Espacial/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Eletromagnéticos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Hum Brain Mapp ; 40(2): 377-393, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240494

RESUMO

Blink-related oscillations (BROs) have been linked with environmental monitoring processes associated with blinking, with cortical activations in the bilateral precuneus. Although BROs have been described under resting and passive fixation conditions, little is known about their characteristics under cognitive loading. To address this, we investigated BRO effects during both mental arithmetic (MA) and passive fixation (PF) tasks using magnetoencephalography (n =20), while maintaining the same sensory environment in both tasks. Our results confirmed the presence of BRO effects in both MA and PF tasks, with similar characteristics including blink-related increase in global field power and blink-related activation of the bilateral precuneus. In addition, cognitive loading due to MA also modulated BRO effects by decreasing BRO-induced cortical activations in key brain regions including the bilateral anterior precuneus. Interestingly, blinking during MA-but not PF-activated regions of the ventral attention network (i.e., right supramarginal gyrus and inferior frontal gyrus), suggesting possible recruitment of these areas for blink processing under cognitive loading conditions. Time-frequency analysis revealed a consistent pattern of BRO-related effects in the precuneus in both tasks, but with task-related functional segregation within the anterior and posterior subregions. Based on these findings, we postulate a potential neurocognitive mechanism for blink processing in the precuneus. This study is the first investigation of BRO effects under cognitive loading, and our results provide compelling new evidence for the important cognitive implications of blink-related processing in the human brain.


Assuntos
Atenção/fisiologia , Piscadela/fisiologia , Ondas Encefálicas/fisiologia , Fixação Ocular/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Resolução de Problemas/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Conceitos Matemáticos , Adulto Jovem
13.
Neurosci Conscious ; 2018(1): niy011, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30488005

RESUMO

Survivors of severe brain injury may remain in a decreased state of conscious awareness for an extended period of time. Clinical scales are used to describe levels of consciousness but rely on behavioural responses, precipitating misdiagnosis. We have previously utilized event-related potentials (ERPs) to circumvent reliance on behavioural responses. However, practical implementation barriers limit the clinical utility of ERP assessment at point-of-care (POC). To address this challenge, we developed the Halifax Consciousness Scanner (HCS)-a rapid, semi-automated electroencephalography system. The current study evaluated: (i) HCS feasibility in sub-acute, POC settings nationwide; (ii) ERP P300 responses in patients with acquired brain injury versus healthy controls; and (iii) correlations within and between clinical measures and P300 latencies. We assessed 28 patients with severe, chronic impairments from brain injuries and contrasted the results with healthy control data (n = 100). Correlational analyses examined relationships between P300 latencies and the commonly used clinical scales. P300 latencies were significantly delayed in patients compared to healthy controls (P < 0.05). Clinical assessment scores were significantly inter-correlated and correlated significantly with P300 latencies (P < 0.05). In sub-acute and chronic care settings, the HCS provided a physiological measure of neurocognitive processing at POC for patients with severe acquired brain injury, including those with disorders of consciousness.

14.
J Transl Med ; 16(1): 151, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866112

RESUMO

BACKGROUND: For nearly four decades, the N400 has been an important brainwave marker of semantic processing. It can be recorded non-invasively from the scalp using electrical and/or magnetic sensors, but largely within the restricted domain of research laboratories specialized to run specific N400 experiments. However, there is increasing evidence of significant clinical utility for the N400 in neurological evaluation, particularly at the individual level. To enable clinical applications, we recently reported a rapid evaluation framework known as "brain vital signs" that successfully incorporated the N400 response as one of the core components for cognitive function evaluation. The current study characterized the rapidly evoked N400 response to demonstrate that it shares consistent features with traditional N400 responses acquired in research laboratory settings-thereby enabling its translation into brain vital signs applications. METHODS: Data were collected from 17 healthy individuals using magnetoencephalography (MEG) and electroencephalography (EEG), with analysis of sensor-level effects as well as evaluation of brain sources. Individual-level N400 responses were classified using machine learning to determine the percentage of participants in whom the response was successfully detected. RESULTS: The N400 response was observed in both M/EEG modalities showing significant differences to incongruent versus congruent condition in the expected time range (p < 0.05). Also as expected, N400-related brain activity was observed in the temporal and inferior frontal cortical regions, with typical left-hemispheric asymmetry. Classification robustly confirmed the N400 effect at the individual level with high accuracy (89%), sensitivity (0.88) and specificity (0.90). CONCLUSION: The brain vital sign N400 characteristics were highly consistent with features of the previously reported N400 responses acquired using traditional laboratory-based experiments. These results provide important evidence supporting clinical translation of the rapidly acquired N400 response as a potential tool for assessments of higher cognitive functions.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Semântica , Sinais Vitais , Estimulação Acústica , Encéfalo/anatomia & histologia , Eletroencefalografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Fatores de Tempo , Adulto Jovem
15.
Front Neurosci ; 12: 968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713487

RESUMO

The critical need for rapid objective, physiological evaluation of brain function at point-of-care has led to the emergence of brain vital signs-a framework encompassing a portable electroencephalography (EEG) and an automated, quick test protocol. This framework enables access to well-established event-related potential (ERP) markers, which are specific to sensory, attention, and cognitive functions in both healthy and patient populations. However, all our applications to-date have used auditory stimulation, which have highlighted application challenges in persons with hearing impairments (e.g., aging, seniors, dementia). Consequently, it has become important to translate brain vital signs into a visual sensory modality. Therefore, the objectives of this study were to: 1) demonstrate the feasibility of visual brain vital signs; and 2) compare and normalize results from visual and auditory brain vital signs. Data were collected from 34 healthy adults (33 ± 13 years) using a 64-channel EEG system. Visual and auditory sequences were kept as comparable as possible to elicit the N100, P300, and N400 responses. Visual brain vital signs were elicited successfully for all three responses across the group (N100: F = 29.8380, p < 0.001; P300: F = 138.8442, p < 0.0001; N400: F = 6.8476, p = 0.01). Initial auditory-visual comparisons across the three components showed attention processing (P300) was found to be the most transferrable across modalities, with no group-level differences and correlated peak amplitudes (rho = 0.7, p = 0.0001) across individuals. Auditory P300 latencies were shorter than visual (p < 0.0001) but normalization and correlation (r = 0.5, p = 0.0033) implied a potential systematic difference across modalities. Reduced auditory N400 amplitudes compared to visual (p = 0.0061) paired with normalization and correlation across individuals (r = 0.6, p = 0.0012), also revealed potential systematic modality differences between reading and listening language comprehension. This study provides an initial understanding of the relationship between the visual and auditory sequences, while importantly establishing a visual sequence within the brain vital signs framework. With both auditory and visual stimulation capabilities available, it is possible to broaden applications across the lifespan.

16.
Front Hum Neurosci ; 11: 489, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085289

RESUMO

Spontaneous blinking occurs 15-20 times per minute. Although blinking has often been associated with its physiological role of corneal lubrication, there is now increasing behavioral evidence suggesting that blinks are also modulated by cognitive processes such as attention and information processing. Recent low-density electroencephalography (EEG) studies have reported so-called blink-related oscillations (BROs) associated with spontaneous blinking at rest. Delta-band (0.5-4 Hz) BROs are thought to originate from the precuneus region involved in environmental monitoring and awareness, with potential clinical utility in evaluation of disorders of consciousness. However, the neural mechanisms of BROs have not been elucidated. Using magnetoencephalography (MEG), we characterized delta-band BROs in 36 healthy individuals while controlling for background brain activity. Results showed that, compared to pre-blink baseline, delta-band BROs resulted in increased global field power (p < 0.001) and time-frequency spectral power (p < 0.05) at the sensor level, peaking at ~250 ms post-blink maximum. Source localization showed that spontaneous blinks activated the bilateral precuneus (p < 0.05 FWE), and source activity within the precuneus was also consistent with sensor-space results. Crucially, these effects were only observed in the blink condition and were absent in the control condition, demonstrating that results were due to spontaneous blinks rather than as part of the inherent brain activity. The current study represents the first MEG examination of BROs. Our findings suggest that spontaneous blinks activate the precuneus regions consistent with environmental monitoring and awareness, and provide important neuroimaging support for the cognitive role of spontaneous blinks.

17.
Front Neurosci ; 10: 211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242415

RESUMO

Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential "brain vital signs." This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22-82 years). Results confirmed specific ERPs at the individual level (86.81-98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia.

18.
J Bone Miner Res ; 30(4): 670-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25284325

RESUMO

Current treatments for postmenopausal osteoporosis aim to either promote bone formation or inhibit bone resorption. The C1 conjugate drug represents a new treatment approach by chemically linking the antiresorptive compound alendronate (ALN) with the anabolic agent prostanoid EP4 receptor agonist (EP4a) through a linker molecule (LK) to form a conjugate compound. This enables the bone-targeting ability of ALN to deliver EP4a to bone sites and mitigate the systemic side effects of EP4a, while also facilitating dual antiresorptive and anabolic effects. In vivo hydrolysis is required to release the EP4a and ALN components for pharmacological activity. Our study investigated the in vivo efficacy of this drug in treating established bone loss using an ovariectomized (OVX) rat model of postmenopausal osteopenia. In a curative experiment, 3-month-old female Sprague-Dawley rats were OVX, allowed to lose bone for 7 weeks, then treated for 6 weeks. Treatment groups consisted of C1 conjugate at low and high doses, vehicle-treated OVX and sham, prostaglandin E2 (PGE2 ), and mixture of unconjugated ALN-LK and EP4a to assess the effect of conjugation. Results showed that weekly administration of C1 conjugate dose-dependently increased bone volume in trabecular bone, which partially or completely reversed OVX-induced bone loss in the lumbar vertebra and improved vertebral mechanical strength. The conjugate also dose-dependently stimulated endocortical woven bone formation and intracortical resorption in cortical bone, with high-dose treatment increasing the mechanical strength but compromising the material properties. Conjugation between the EP4a and ALN-LK components was crucial to the drug's anabolic efficacy. To our knowledge, the C1 conjugate represents the first time that a combined therapy using an anabolic agent and the antiresorptive compound ALN has shown significant anabolic effects which reversed established osteopenia.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Difosfonatos/uso terapêutico , Modelos Animais de Doenças , Osteoporose Pós-Menopausa/tratamento farmacológico , Ovariectomia , Receptores de Prostaglandina E Subtipo EP4/agonistas , Coluna Vertebral/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Remodelação Óssea , Difosfonatos/farmacologia , Feminino , Humanos , Osteoporose Pós-Menopausa/fisiopatologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...